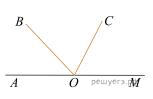
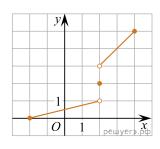

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.

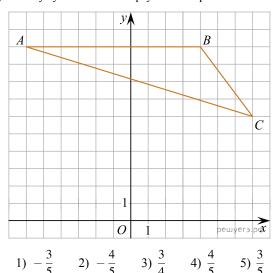

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

- 1. Если $7\frac{2}{9}$: $x = 4\frac{1}{3}$: $3\frac{3}{5}$ верная пропорция, то число x равно:


 1) $5\frac{2}{3}$ 2) 6 3) 4 4) 1,6 5) 1,5
- 2. Укажите номер рисунка, на котором изображен равнобедренный треугольник.

3. На рисунке изображены развернутый угол AOM и лучи OB и OC. Известно, что $\angle AOC = 102^\circ$, $\angle BOM = 128^\circ$. Найдите величину угла BOC.

4. Укажите область значений функции y = f(x), заданной графиком на промежутке [-2: 4] (см. рис.).


- 1) [0; 5] 2) $[0; 1] \cup [3; 5]$ 3) $[0; 1) \cup \{2\} \cup (3; 5]$ 4) $[0; 1] \cup \{2\} \cup [3; 5]$ 5) $[0; 1) \cup (3; 5]$
- 5. Сократите дробь $\frac{16 (x+3)^2}{x^2 + 9x + 14}$.

 1) $\frac{x+1}{x+2}$ 2) $\frac{1-x}{x-2}$ 3) $\frac{x-1}{x-2}$ 4) $\frac{1-x}{x+2}$ 5) $\frac{x-1}{x+2}$
- 6. Укажите номер выражения, являющегося одночленом восьмой степени:

а)
$$\frac{x^7yzc^{-1}}{2}$$
 б) $\frac{a^5bc}{2c^{-1}}$ в) $ab + 8b$ г) $\frac{\sqrt{5}ab(bc)^3}{3}$ д) $16x^8y$ 1) а 2) 6 3) в 4) г 5) д

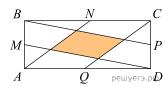
- 7. В магазин поступило 43 коробки с маслом по 110 пачек масла в каждой. Какое наименьшее количество пачек масла необходимо продавать ежедневно, чтобы масло было распродано не более чем за 60 дней?
 -) 78 2) 81 3) 79 4) 83 5) 77

8. На координатной плоскости изображен тупоугольный треугольник ABC с вершинами в узлах сетки (см. рис.). Косинус угла ABC этого треугольника равен:

9. Через точку A высоты SO конуса проведена плоскость, параллельная основанию. Определите, во сколько раз площадь основания конуса больше площади полученного сечения, если SA:AO=2:3.

1)
$$6\frac{1}{4}$$
 2) $7\frac{1}{4}$ 3) $2\frac{1}{4}$ 4) $1\frac{1}{2}$ 5) $2\frac{1}{2}$

10. Купили d ручек по цене 2 руб. 6 коп. за штуку и 185 тетрадей по цене m коп. за штуку. Составьте выражение, которое определяет, сколько рублей стоит покупка.


1)
$$2,6d+1,85m$$
 2) $2,6d+18,5m$ 3) $2,06d+1,85m$ 4) $2,06d+185d$ 5) $2,06d+18,5m$

- **11.** Если в правильной четырехугольной пирамиде высота равна 4, а площадь диагонального сечения равна 6, то ее объем равен ...
- **12.** В окружность радиусом 4 вписан треугольник, длины двух сторон которого равны 6 и 4. Найдите длину высоты треугольника, проведенной к его третьей стороне.

- **13.** Внешний угол правильного многоугольника равен 45°. Выберите все верные утверждения для данного многоугольника.
 - 1. Многоугольник является восьмиугольником.
 - 2. Сумма всех внутренних углов составляет 1080°.
 - 3. Если сторона многоугольника равна 2, то радиус вписанной окружности равен $2+\sqrt{2}$.
- 4. Площадь многоугольника можно вычислить по формуле $S=2\sqrt{2}R^2$, где R радиус описанной окружности.

Ответ запишите в виде последовательности цифр в порядке возрастания. Например: 123.

- **14.** Найдите (в градусах) наибольший отрицательный корень уравнения $\sin^2\left(5x \frac{\pi}{3}\right) = 1$.
- **15.** Найдите сумму целых решений неравенства $5^{3x+1} 26 \cdot 25^x + 5^{x+1} \le 0$.
- **16.** Площадь прямоугольника ABCD равна 50. Точки M, N, P, Q середины его сторон. Найдите площадь четырехугольника между прямыми AN, BP, CQ, DM.

17. Найдите сумму корней уравнения

$$|(x-3)(x-8)| \cdot (|x|+|x-10|+|x-5|) = 11(x-3) \times (8-x).$$

- **18.** Выберите три верных утверждения, если известно, что $\sin\alpha=\sin38^\circ$ и $\cos\alpha=-\cos38^\circ$.
 - 1) а угол первой четверти
 - 2) $ctg \alpha < 0$
 - $3) \sin^2\alpha + \cos^2 38^\circ = 1$
 - 4) $\sin(\alpha + 38^\circ) = 0$
 - 5) $tg\alpha > 0$
 - 6) $\alpha = -38^{\circ}$

Ответ запишите в виде последовательности цифр в порядке возрастания. Например: 234.

19. Найдите сумму корней (корень, если он единственный) уравнения $\sqrt{x^2+6x}+\sqrt{1-x}=\sqrt{x+14}+\sqrt{1-x}$.

- **20.** Найдите сумму целых решений неравенства $\frac{(x^2+7x+6)(x-4)^2}{1-x^2}\geqslant 0.$
- **21.** Пусть (x; y) решение системы уравнений $\begin{cases} 3x y = 7, \\ 3x^2 xy + x = 32. \end{cases}$

Найдите значение 3y - x.

- **22.** Найдите увеличенное в 9 раз произведение абсцисс точек пересечения прямой y=12 и графика нечетной функции, которая определена на множестве $(-\infty;0) \cup (0;+\infty)$ и при x>0 задается формулой $y=2^{3x-8}-20$.
- **23.** Дана геометрическая прогрессия (b_n) , в которой $b_5 = -12$, $b_6 = 36$. Для начала каждого из предложений A–B подберите его окончание 1–6 так, чтобы получилось верное утверждение.

Начало предложения

Окончание предложения

- А) Знаменатель этой прогрессии равен ...
- Б) Четвертый член этой прогрессии равен ...
- В) Первый член этой прогрессии равен ...
- 1) -4
 - 2) $-\frac{4}{27}$
- 3) $-\frac{1}{3}$
- 4) -3
- 5) 4
- 6) $\frac{4}{81}$

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Помните, что некоторые данные правого столбца могут использоваться несколько раз или не использоваться вообще. Например: A1Б1B4.

- **24.** Количество целых решений неравенства $5^{x+3} + \log_{0.2}(23 x) > 3$ равно ...
- **25.** В равнобокой трапеции большее основание вдвое больше каждой из остальных сторон и лежит в плоскости α . Боковая сторона образует с плоскостью α угол, синус которого равен $\frac{7\sqrt{3}}{18}$. Найдите 36sin β , где β угол между диагональю трапеции и плоскостью α .
 - **26.** Найдите значение выражения $\sqrt{2} \cdot \sqrt[3]{-5} \cdot \sqrt{128} \cdot \sqrt[3]{25} 4 \frac{\sqrt[5]{-2}}{\sqrt[5]{64}}$.

27. Решите уравнение

$$\frac{30x^2}{x^4 + 25} = x^2 + 2\sqrt{5}x + 8.$$

В ответ запишите значение выражения $x \cdot |x|$, где x — корень уравнения.

- **28.** Найдите сумму всех целых чисел из области определения функции $y = \frac{\sqrt[4]{56 + 9x 2x^2}}{\log \sqrt[3]{7}x 3}$
- **29.** Найдите произведение корней уравнения $x \sqrt{x^2 64} = \frac{(x-8)^2}{2x+16}$.
- **30.** Найдите все пары (m, n) целых чисел, которые связаны соотношением $m^2 + 2m = n^2 + 6n + 13$. Пусть k количество таких пар, m_0 наименьшее из значений m, тогда значение выражения $k \cdot m_0$ равно